Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes.
نویسندگان
چکیده
The possibility of obtaining metal cluster (M3O(+), M = Li, Na, K) supported pristine, B-doped and BN-doped graphene nanoflakes (GR, BGR and BNGR, respectively) has been investigated by carrying out density functional theory (DFT) based calculations. Thermochemical analysis reveals the good stability of M3O(+)@GR/BGR/BNGR moieties. The dynamic stability of M3O(+)@GR/BGR/BNGR moieties is confirmed through an atom-centered density matrix propagation simulation at 298 K up to 500 fs. Orbital and electrostatic interactions play pivotal roles in stabilizing the metal-cluster supported graphene nanoflakes. The metal clusters lower the Fermi levels of the host nanoflakes and enable them to exhibit reasonably good optical response properties such as polarizability and static first hyperpolarizability. In particular, Na3O(+)/K3O(+)@BGR complexes exhibit very large first hyperpolarizability values at the static field limit. All the M3O(+)@BGR/BNGR moieties demonstrate broadband optical absorption encompassing the ultraviolet, visible as well as infrared domains. The metal-cluster supported graphene nanoflakes, in general, can sequestrate polar molecules, viz. CO, NO and CH3OH, in a thermodynamically more favorable way than GR, BGR and BNGR. In the adsorbed state, the CO, NO and CH3OH molecules, in general, attain an 'active' state as compared to their free counterparts.
منابع مشابه
Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)
We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that th...
متن کاملSensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene
Recent research interest in two-dimensional (2D) materials has led to an emerging new group of materials known as transition metal dichalcogenides (TMDs), which have significant electrical, optical, and transport properties. MoS2 is one of the well-known 2D materials in this group, which is a semiconductor with controllable band gap based on its structure. The hydrothermal process is known as o...
متن کاملTransmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field
By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملPreparation of surface coatings on a conductive substrate by controlled motion of graphene nanoflakes in a liquid medium
Controlled motion of graphene and graphene oxide nanoflakes in a thin liquid film on metal surfaces was studied to unravel the significant variations of the electric field effects on the nanoparticles. It was found that graphene oxide flakes were negatively charged and migrated toward anode while the electrically neutral graphene flakes moved toward cathode. Therefore, thin layers of graphene a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 28 شماره
صفحات -
تاریخ انتشار 2016